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Four Challenges 

Parallel Programming Transformation 

MPI+Serial  … 

Goal: 1-10 Billion-way parallel. 

Beyond the Forward Problem 

Optimal, bounded solutions 

New linear algebra kernels. 

Fault-resilient application execution 

Progress in the presence of system instability 

High quality, multi-institutional, multi-component, 

multi-layered SW environment. 

Single monolithic application  … 



Preliminaries 



About MPI 
MPI will be the primary inter-node programming model. 

Right ingredients: 

Portable, ubiquitous. 

Forced alignment of work/data ownership and transfer.  

Matches architectures:  

Interconnects of best commercial node parts. 

Key point: Very few people write MPI calls. 

Domain-specific abstractions. 

Example: Epetra_MpiDistributor 

• 20 revisions since initial checkin in December 2001. 

• Only three developers made non-trivial changes in 8+ years. 

• No nontrivial changes in 4+ years.  No changes in 2+ years. 

New languages: 

Big fan of Co-Array Fortran (Have been for 15 years: F--). 

Chapel looks good. 

But tough uphill climb. 

Real question: How do we program the node? 



Node Classification 

Homogeneous multicore: 

SMP on a chip. 

NUMA nodes. 

Varying memory architectures. 

Heterogeneous multicore: 

Serial/Controller processor(s). 

Team of identical, simpler compute  
processors. 

Varying memory architectures. 



Why Homogeneous vs. 

Heterogeneous? 

Homogeneous:  

Out-of-the-box: Can attempt single-level MPI-only. 

m nodes, n cores per node: p = m*n 

mpirun -np p … 

Heterogeneous: 

Must think of compute cores as “co-processors”. 

mpirun -np m … 

Something else on the node. 

Future:  

Boundary may get fuzzy. 

Heterogenous techniques can work well on 
homogeneous nodes. 



Single Core Performance:  

Still improving for some codes 

MiniFE microapp. 

Clock speeds stable:  

~ 2GHz. 

FP-friendly 

computations stalled. 

Memory-intensive 

computations still 

improving. 

Prediction: Memory 

bandwidth “wall” 

will fall. 

Year Processor Clock 

(GHz) 

Cores/ 

socket 

MFLOPS/

sec 

2003 AMD Athlon 1.9 1 178 

2004 AMD Opteron 1.6 1 282 

2005 Intel Pentium M 2.1 1 310 

2006 AMD Opteron 2.2 2 359 

2007 Intel Woodcrest 1.9 4 401 

2007 AMD Opteron 2.1 4 476 

2007 Intel Core Duo 2.3 2 508 

2008 AMD Barcelona 2.1 4 550 

2009 Intel Nehalem 2.2 4 ~900 



Mixed Precision: Now is the Time 
with Chris Baker, Alan Williams, Carter Edwards 



The Case for Mixed Precision 

Float useful:  

Always true. 

More important now. 

Mixed precision 

algorithms. 

Bandwidth even more 

important: 

Saturation means loss 

of effective core use. 

Loss of scaling 

opportunity for modern 

systems. 

50% 

15% 

• Mixed precision & GPUs:  

• GEForce GTX280 

– SP: 624 GFLOPS/s 

– DP: 78 GFLOPS/s 

• First MiniFE result on GPUs: 4.71 GFLOP/s (SP) 

• Expected results: 12 GFLOP/s (SP), 6 GFLOP/s (DP) 



C++ Templates 

How to implement mixed 
precision algorithms? 

C++ templates only sane 
way. 

Moving to completely 
templated Trilinos libraries. 

Core Tpetra library working. 

Other important benefits. 

Template Benefits: 

– Compile time polymorphism. 

– True generic programming. 

– No runtime performance hit. 

– Strong typing for mixed 
precision. 

– Support for extended precision. 

– Many more… 

Template Drawbacks: 

– Huge compile-time performance hit: 

• But this is OK: Good use of 
multicore :) 

• Can be greatly reduced for 
common data types. 

- Complex notation (for Fortran & C 
programmers). 



C++ Templates and Multi-precision 

// Standard method prototype for apply matrix-vector multiply: 

template<typename ST, typename OT> 

CrsMatrix::apply(Vector<ST, OT> const& x, Vector<ST, OT>& y) 

// Mixed precision method prototype (DP vectors, SP matrix): 

template<typename ST, typename OT> 

CrsMatrix::apply(Vector<ScalarTraits<ST>::dp(), OT>  const& x,    

   Vector<ScalarTraits<ST>::dp(), OT> & y) 

// Sample usage: 

Tpetra::Vector<double, int> x, y; 

Tpetra::CrsMatrix<float, int> A; 

A.apply(x, y);  // Single precision matrix applied to double precision vectors 



Tpetra is a templated version of the Petra distributed 
linear algebra model in Trilinos. 

Objects are templated on the underlying data types: 

MultiVector<scalar=double, local_ordinal=int, 
   global_ordinal=local_ordinal> …

CrsMatrix<scalar=double, local_ordinal=int, 
   global_ordinal=local_ordinal> …

Examples: 

MultiVector<double, int, long int> V;
CrsMatrix<float> A;

Tpetra Linear Algebra Library   

Scalar float double 
double-

double 

quad-

double 

Solve time (s) 2.6 5.3 29.9 76.5 

Accuracy 10-6 10-12 10-24 10-48 

Arbitrary precision solves  

using Tpetra and Belos  

linear solver package 

Speedup of float over double 

in Belos linear solver. 

float double speedup 

18 s 26 s 1.42x 



class FloatShadowDouble { 

public: 

  FloatShadowDouble( ) { 

    f = 0.0f; 

    d = 0.0;  } 

  FloatShadowDouble( const FloatShadowDouble & fd) { 

    f = fd.f; 

    d = fd.d;  } 

… 

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd ) { 

    f += fd.f; 

    d += fd.d; 

    return *this;  } 

… 

inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) { 

  os << fd.f << "f " << fd.d << "d”;  return os;} 

FP Accuracy Analysis: 

FloatShadowDouble Datatype 

Templates enable 

new analysis 

capabilities 

Example: Float with 

“shadow” double. 



FloatShadowDouble 

Initial Residual =                455.194f         455.194d 

Iteration = 15   Residual = 5.07328f         5.07618d 
Iteration = 30   Residual = 0.00147f         0.00138d 

Iteration = 45   Residual = 5.14891e-06f  2.09624e-06d 
Iteration = 60   Residual = 4.03386e-09f  7.91927e-10d 

Sample usage: 

#include “FloatShadowDouble.hpp” 

Tpetra::Vector<FloatShadowDouble> x, y; 

Tpetra::CrsMatrix<FloatShadowDouble> A; 

A.apply(x, y);  // Single precision, but double results also computed, available 



Programming Models for Scalable 

Homogeneous Multicore 

(beyond single-level MPI-only) 



Parallel Machine Block Diagram 

Memory 

Core 0 Core n-1 

Node 0 

Memory 

Core 0 Core n-1 

Node 1 

Memory 

Core 0 Core n-1 

Node m-1 

– Parallel machine with p = m * n processors:  
• m = number of nodes. 

• n = number of shared memory processors per node. 

– Two ways to program: 
• Way 1: p MPI processes. 

• Way 2: m MPI processes with n threads per MPI process. 

- New third way: 

• “Way 1” in some parts of the execution (the app). 

• “Way 2” in others (the solver). 



Threading under MPI 

Default approach: Successful in many applications. 

Concerns: 

Opaqueness of work/data pair assignment. 

• Lack of granularity control. 

Collisions: Multiple thread models. 

• Performance issue, not correctness. 

Bright spot: Intel Thread Building Blocks (TBB). 

Iterator (C++ language feature) model. 

Opaque or transparent: User choice. 

App 

LibA 
(OpenMP) 

LibB 
    (TBB)     



MPI Under MPI 

Scalable multicores: 

Two different MPI architectures. 

Machines within a machine. 

Exploited in single-level MPI: 

Short-circuited messages. 

Reduce network B/W. 

Missing some potential. 

Nested algorithms. 

Already possible. 

Real attraction: No new node programming model. 

Can even implement shared memory algorithms 

(with some enhancements to MPI). 

“Ping-pong” 

test 

Latency 

(microsec) 

Bandwidth 

(MB/sec) 

Inter-node 

machine 

0.71 1082 

Intra-node 

machine 

47.5 114 



Multicore Scaling: App vs. Solver 

Application:  
Scales well 
(sometimes superlinear) 

MPI-only sufficient. 

Solver:  
Scales more poorly. 

Memory system-limited. 

MPI+threads can help. 

*  Charon Results:  

  Lin & Shadid TLCC Report 



Hybrid Parallelism Opportunities 

8 threads with work stealing 

• Selective Shared Memory Use: 

– App: 4096 MPI tasks. 

– Solver: 256 MPI tasks, 16-way threading. 

• Robustness:  

- 117 iterations (not 153). 

- Eliminates green region. 

•  Speed: Threading (carefully used): 

- Same asymptotic speed as MPI. 

- Faster ramp up: 2X or more. 

- Better load imbalance tolerance. 

     Bottom line: Hybrid parallelism 
promises better: 

- Robustness,  

- Strong scaling and  

- Load balancing. 

* Thread Results:  

 H. Carter Edwards 



Hybrid Parallelism: 

Shared Memory Algorithms 

Critical kernel for many scalable preconditioners. 

Key Idea: Use sparsity as resource for parallelism. 



Heterogeneous Multicore Issues 



Excited about multimedia processors 

Inclusion of native double precision. 

Large consumer market. 

Qualitative performance improvement over 

standard microprocessors… 

If your computation matches the architecture. 

Many of our computations do match well. 

Homogeneous vs. Heterogeneous: 

Indistinguishable in Future. 



APIs for Heterogeneous Nodes 

(A mess, but some light) 

Processor API 

NVIDIA CUDA 

AMD/ATI Brook+ 

STI Cell ALF 

Intel Larrabee Ct 

Most/All? Sequoia 

Most RapidMind (Proprietary) 

Apple/All OpenCL 

Commonality: Fine-grain functional programming. 

Our Response: A Library Node Abstraction Layer 



Preparing for Manycore 



Refactoring for Manycore 

Regardless of node-level programming model: 

Isolate all computation to stateless functions. 

Formulate functions so that work granularity can 

vary. 

Fortran/C: 

Natural approach. 

Still requires some change for variable granularity. 

C++:   

Separate data organization from functions. 

Can still have computational methods. 



Beyond the Forward Problem 



Advanced Modeling and Simulation Capabilities: 

Stability, Uncertainty and Optimization 

• Promise: 10-1000 times increase in parallelism (or more). 

• Pre-requisite: High-fidelity “forward” solve: 

Computing families of solutions to similar problems. 

Differences in results must be meaningful. 

SPDEs: Transient 

Optimization: 

    - Size of a single forward problem 

Lower Block 

Bi-diagonal 

Block 

Tri-diagonal 

t0 

t0 

tn 

tn 



Advanced Capabilities:  

Readiness and Importance 
Modeling Area Sufficient 

Fidelity? 

Other concerns Advanced 

capabilities priority 

Seismic 

S. Collis, C. Ober 

Yes. None as big. Top. 

Shock & Multiphysics 

(Alegra) 

A. Robinson, C. Ober 

Yes, but some 

concerns. 

Constitutive models, 

material responses 

maturity. 

Secondary now.  Non-

intrusive most 

attractive. 

Multiphysics 

(Charon) 

J. Shadid 

Reacting flow w/ 

simple transport, 

device w/ drift 

diffusion, … 

Higher fidelity, more 

accurate multiphysics. 

Emerging, not top. 

Solid mechanics 

K. Pierson 

Yes, but… Better contact. Better 

timestepping.  Failure 

modeling. 

Not high for now. 



Advanced Capabilities: 

Other issues 

Non-intrusive algorithms (e.g., Dakota): 

Task level parallel:  

• A true peta/exa scale problem? 

• Needs a cluster of 1000 tera/peta scale nodes. 

Embedded/intrusive algorithms (e.g., Trilinos): 

Cost of code refactoring: 

• Non-linear application becomes “subroutine”. 

• Disruptive, pervasive design changes. 

Forward problem fidelity: 

Not uniformly available. 

Smoothness issues. 

Material responses. 



Advanced Capabilities: 

Derived Requirements 
Large-scale problem presents collections of related 

subproblems with forward problem sizes. 

Linear Solvers: 

Krylov methods for multiple RHS, related systems. 

Preconditioners: 

Preconditioners for related systems. 

Data structures/communication: 

Substantial graph data reuse.  

Ax = b AX = B,   Axi = bi ,   Aixi = bi

Ai
= A0 + Ai

pattern(Ai ) = pattern(A j )



Fault Resilience 
with Patty Hough, Vicki Howle 



Soft errors are becoming more prevalent due to 

small features operating at low voltages 

“At 8 nm process technology, it will be harder to 

tell a 1 from a 0.”  (Camp, 2008) 

… 

Soft errors are scary to apps 

Computation proceeds but is wrong 

Careful verification required 

What if verification has soft errors? 



Users’ View of the System 

Now vs. Future 

Now:  

“All nodes up and running.” 

Certainly nodes fail, but invisible to user. 

Future:  

Nodes in one of four states. 

• Dead. 

• Dying (perhaps producing faulty results). 

• Reviving. 

• Running properly (hopefully large portion). 

Not hidden from user. 



Consider GMRES as an example of how 

soft errors affect correctness 

Basic Steps 

1) Compute Krylov subspace (sparse matrix-vector 

multiplies) 

2) Compute orthonormal basis for Krylov subspace 

(matrix factorization) 

3) Compute vector yielding minimum residual in 

subspace (linear least squares) 

4) Map to next iterate in the full space 

5) Repeat until residual is sufficiently small 

More examples in Bronevetsky & Supinski, 2008 



Every calculation matters 

Small PDE Problem: Dim 21K, Nz 923K. 

ILUT/GMRES 

Correct computation 35 Iters: 343M FLOPS 

Two examples of a single bad floating point op 

Description Iterations FLOPS Recursive 

Residual Error 

Solution Error 

All Correct Calcs 35 343M 4.6e-15 1.0e-6 

Iter=2, y[1] += 1.0 

SpMV incorrect 

Ortho subspace 

35 343M 6.7e-15 3.7e+3 

Q[1][1] += 1.0 

Non-ortho subspace 

N/C N/A 7.7e-02 5.9e+5 



One possible approach is transactional 

computation 

Database transactions: atomic 

Transactional memory: atomic memory 

operation 

Transactional computation: 

Designated sensitive computation region 

(orthogonalization step in GMRES) 

Guarantee accurate computation or notify user 



Needs to be coupled with 

guaranteed data regions 

User-designated reliable data region 

Extra protection to improve reliable 

data storage and transfer 

Examples 

Original input data (needed for 

verification) 

Linear solver: A, x, b 

Orthogonal vectors for GMRES 



More generally, what should application 

developers do? 

Abandon the assumption that the system can 
continue to guarantee reliability and 
correctness??? 

Work with system, system software, middleware, 
etc. developers to learn what can be provided and 
to develop requirements 

Develop a more holistic view of application 
development – develop algorithms/applications 
suitable for running correctly through failure and 
handling multi-threading 

Reserve the right to use slower, more reliable 
systems 



Software Issues 



Barely Sufficient Software Engineering: 
Ten SW Engineering Practices 

0  Manage source (the basics) 

1 Use issue-tracking software for requirements, features and bugs  

2 Manage source (beyond the basics)  

3 Use mail lists to communicate  

4 Use checklists for repeated processes  

5 Create barely sufficient, source-centric documentation  

6 Use build-configuration management tools  

7 Write tests first, run them often  

8 Program tough stuff together  

9 Use a formal release process  

10 Perform continual process improvement  



About “Barely sufficient” 

A minimalist attitude to formal processes:  
Adopt only those that have a large impact. 

Mindless Imposition of Formal SE bad for CSE 
community: 

Large-scale formal document generation as “first step”.   
Large effort to satisfy an external requirement, does not benefit the 
project team.   
Documents become out-of-date quickly and therefore are irrelevant 
or even misleading. 

Formal documents: 
Certainly play a role in a project:  

• Domain vision statement, e.g., Trilinos Strategic Goals. 
• Highlighted core, ACM TOMS article An Overview of the Trilinos Project. 

Modest, should be developed after the product architecture is stable.   
Are essential when a product is ready for hand-off to maintenance 
team. 



Summary 

Four Challenges  Opportunities 

Parallel Programming Transformation 

Start now: Refactor using functional programming. 

Develop your own Node API (or consider ours). 

Beyond the Forward Problem 

Plenty of parallelism. Lots of work. 

New collection of linear problems to solve. 

Fault-resilient application execution 

New opportunities to reformulate core algorithms. 

High quality, multi-institutional, multi-component, 

multi-layered SW environment. 

Time to start (continue) SW engineering efforts. 


